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Poster: Applications

1 Introduction

This paper describes probabilistic methods for novelty detection when using pattern recognition
methods for fault monitoring of dynamic systems. ‘I’he problemn of novelty detection is particularly
acute when prior knowledge and data only allow one to construct an incomplete prior model of the
system. Hence, some allowance must be made in modeldesign so that a classifier will be robust
to data generated by classes not included in the training phase. For the fault detection problem a
practical approach is to construct both an input density model and a discrirninative class model.
The construction of an input model for data of unknown origin is fundamentally ill-posed but can
be solved in practical terms by using knowuconstraints on theinput features and constructing
a non-informative prior density. In conjunction with Bayes rule, and some prior estimates of the
relative likelihood of data of known and unknown origin, the actual classification equations are
straightforward. The paper describes the application of this method in the context of hidden
Markov models for online fault monitoring of large ground antennasfor spacecraft tracking, with
particular application to the detection of transicutbehaviour of unknown origin.

2 Problem Background

Conventional control-theoretic models for fault detection rely on an accurate modelof tile plant
being monitored: ‘frequently in practice no such model exists for cornplicated non-linear systems.
The large ground antennas used by JPL’s Deep Space Network (DSN) to track planctary space-
craft fall into this category — quite complicated analytical models exist for the electro-mechanical
pointing systems, but they are known to be a poor fit for fault detectionpurposes.

2.1 Basic Detection Architecture

We have previously described the application of online adaptivepattern recognition methods to
this problem [1, 2]. The system operates as follows, Sensordata such as motor current, position
encoder, tachometer voltages, and so forth aresynchronously sampledat 501z by adata acquisition




systemn. The data is blocked ofl into disjoint windows ('200 samples areusedin practice) and various
features (such as estimated au toregressive coeflicients) are extracted;let the feature vector be 0.

The features are feel into a classificationmodel (every 4seconds)whichinturn provides posterior
probability estimates of the m possible states of the systemn given the estimnated features from that
window, p(w;]0).wy corresponds to normal couditions, the other w;’s, 1 <i< m, correspond to
known fault conditions.

Finally, since the systern has “memory” in the sense that it is more likely to remnain in the
current, state th an to change states, the posterior probabilities need to be correlated over time.
This is acheived by a standard first-order hidden Markov model (HMM) which models the temporal
state dependence [2].

A's describedin [1, 2] the classifier portion of themmodel is trained using simulated hardware
“faults. The feed-forward neural network has been the model of choice for this application because
of its discriinination ability, its posterior probability estiination properties [3, 4] andits relatively
siinple implementation in software. Also describedin ['2] atlength is the design of the HMM tran-
sition matrix based on prior knowledge of systemn mean time between failure (MTBI) information
andother specific knowledge of the system config uration.

3 limitations of the Discriminat ive-11M M Model

The model described above assumnes that there are m known mutually exclusive and exhaustive
states (or “classes”) of thesystemn,wy .. ,w,,. Themutually exclusive assumption isrcasonablein
many applications where multiple sirmultaneous failures arc highly unlikely. Ilowever,the exhaustive
assumption is somewhat impractical. In particular, for fault detectionin a complex system such
as the antenna, thercare literally thousands of possible fault conditions which might occur. The
probability of occurrence of any single condition is very sinall, but nonetheless there is a significant
probability that at least one of th ese conditions will occur over some finite time. While the common
fanlts can be directly modelled it isnot practical Lo assign states to all the other minor faults which
might occur.

As discussed in [1] and [5], discriminative models directly modelthe posterior probabilities of the
classes given the feature data andthey assuimethat the classes are exhaustive. Onthe other hand,
a generalive model directly models the data likelihood p(0lw;i) and then determines poster jor class
probabilities by application of Bayes’ rule. Examples of generative classifiers include parametric
models such as Gaussian classifiers and [llelrlory-based methods such as kernel density estinators
and near neighbour models. Generative models are by nature well suited to novelty detection.
However, there is a trade-offi because generative models typically arc doing more modelling than
just scare.llillg for a decisionboundary,they canbe less eflicient. (than discriminant methods)intheir
use of the data. For example, generative models typically scale poorly with input dimensionality
for fixed training sample size - see Dawid [(j] and Smyth[5] for further discussion.

4 1lybrid Models

A practical approach is Lo use both a generat. ive and discriminative classifier arid addan extra
“m -1 1 th” state Lo the model to cover ‘(all other possible states” not accounted for by the known
m states. Hence, the posterior estimates of the generative classifier arc conditioned on whether or
not the data is thought to cot ne fromone of the mknown classes.

Let the symbol wyy  ,ny denot e the event. that the true system state is one of the knownstates,
andlet p(wy, 41]0) bethe posterior probability that the data is from an unknown state. Hence, one



can estimate the true posterior probability of individual known states as

P(wild) = pa(wild, wqa,...my) X (1 - plwmq118)), 1<i<m €N

where pa(wilf, wii,...m}, is the posterior probability estimate of state ¢ as provided by a discrimi-
native model.
The calculation of p(wm+1/8) can be obtained via the usual application Bayes’ rule if P(&lwm41),

(W41 ), and P(ﬁlw{l,....m}) are known, i.e.,

plomir 10) 5o PO i) @
plllwnt1)p(wnyr) + P(Qlwir...my) 200 P(wi)

In practice we have used non-informative Bayesian priors for p(ﬁlwm+1) over a bounded space
of feature values (details are available in a technical report [7]), although this choice of a prior
density or data of unknown origin is basically ill-posed. The stronger the constraints which can
be placed on the features, the narrower the prior density, and the better the ability of the overall
model to detect novelty. If we only have very weak prior information, this will translateinto a
weaker criterion for accepting points which belong to the unknown category.

The term p(w,,41) must be chosenbased on the designer’s prior belief of how often the system
will be in anunknown state --- a practical choice is that the system is at least as likely to be in an
unknown failure state as any of the known failure states.

The P(8lwq,....m}) term in Equation (2) is provided directly by the generative model. Typically
this can be a mixture of Gaussians or a keruel density estimate over all of the training data (ignoring
class labels). In practice, for simplicity of implementation we use a simple Gaussian mixture model.
Furthermore, because of the afore-mentioned scaling problem with input dimensions, only a subset
of relatively significant input features are used in the mixture model. A less heuristic approach to
this aspect of the problem (with which we have not yetexperiinented)would be touse amethod
such as projection pursuit to project the data into lower dimensions and perform the input density
estimation in this space. The main point is that the generative model need not necessarily work in
the full dimensional space of the input features,

Integration of equation (1) into the hidden Markov model updating is straightforward and
will not be derived ~— the model now has an extra state, “unknown.” The choice of transition
probabilities between the unknown and other states is once again a matter of design choice. For
the antenna applicationat least, many of theuuknown states are believed to be relatively brief
transient phenomena which last perhaps uolougerthan a few seconds: hence the Markov matrix is
designed to reflect these beliefs since the expected duration of any state dw:](inunits of sampling

intervals) must obey

dw = -, (3)

where Pii is the self-transition probability of state w;.

5 Experimental Results

For comparison purposes we evaluated the results of 2 part icular models.  Each was applied to
monitoring the servo pointing system of aDSN 34inantenna at Golds tone, California. Thie models
were implemented within the Lab View dat a acquisition package running iureal-time ona Macintosh
Il at the antenna site. The models had previously been trained off-line on data collected some
months earlier. ‘There were 12 input featuresused. The experiment consisted of introdncing
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Figure 1: Estimated posterior probability of normal state (@) using no HMM and the exhaustive
assumption (normal 4 3 fault states), (b) using a HMM with a generative model (normal -t- 3 faults
+ other state).

hardware faults into the system in a controlled manner at 15 minu tes and 45 minutes, each of 15
minutes duration.

Figure 1 (a) and (b) show each model’'s estimates over time that the system is in the normal
state (space limitations precluded the inclusion of more detailed experimental results). Model (a)
uses no HMM and assumes that the 4 known states are exhaustive - a single feedforward neural
network with 8 hidden units was used as the discriminative model. Model (b) uses all MM with 5
states, where a generative model (a Gaussian mixturemodel) and a flat prior (with bounds on the
feature values) are used to determine the probability of the 5th state. Thesame neural network as
in. mode] (@) is used as a discriminator for the otherdknown states. The generative mixture model
had 10 components and used only 2 of the 12 input features, the 2 which were judged to be the most
senstive to system change. The parameters of the 11 MM were designed according to the guidelines
described earlier, Known fault states were assumed to be equally likely with 1 hour MTBF’s and
with 1 hour mean duration. Unknown faults were assumed to have a 20 minute MTBF and a 10
second mean duration.

Model(a)’s estimates are quite noisy and contain a significant number of potential false alarms
(highly undesirable in an operational environment). Model (b) is much more stable due to the
sinoothing effect of the HMM. Nonetheless, wc notethat between the 8th and 10 minutes, there
appear to be some possible false alarms: this data was classified into the unknown state (not
shown). On later inspection it was found that large transients (of unknown origin) were in fact



present in the original sensor data and that this was what the model had detected, confirming the
result obtained independently by the classifier. It is worth pointing out that the model without a
generative component (whether with or without the HMM) did in fact always detect a non-normal
state at the same time, but incorrectly classified this stateasone of the known fault states (these
results are not shown).

6 Application, Issues

The ability to detect such previously unseen transient behaviour has important practical conse-
quences: as well as being used to warn operators of servo problems in rea-time, the model will also
be used as a filter to a data logger to record interesting and anomalous servo data on a continuous
basis. hence, potentially novel system characteristics can be recorded for correlation with other
antenna-related events (such as maser problems, receiver lock drop during RF feedback tracking,
etc. ) for later analysis to uncover the true cause of the anomaly.

Based on these and related results, the basic model described here has recently been approved for
inclusion as a functional requirement in the antenna controller design for all new DSN antennas.
The first such antenna is currently being built at the Goldstone, California, DSN site and will
become operational in 1994 -— similar antennas, also with onboardfault detectors of the type
described here, will be constructed in Spain and Australia in the 1995-96 time-frame.
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